Lawrence E Gilbert Robert Plowes Edward LeBrun

Fire ants – problematic invasive species

Tawny crazy ants – an emerging threat in Texas

Fire ants – problematic invasive species

Exotic range grasses that impact fire ecology and displace native species

Tawny crazy ants – an emerging threat in Texas

Fire ants – problematic invasive species

Exotic range grasses that impact fire ecology and displace native species

Cactoblastis moths potentially a major problem in S Texas ecosystems

> Tawny crazy ants – an emerging threat in Texas

> > Fire ants – problematic invasive species

Mission

To study the basic biology of exotic invasive pests in their native lands and seek novel and sustainable approaches to countering problem organisms that threaten biodiversity in the central and southern parts of Texas.

• Undertake basic research into invasive species complexes.

- Undertake basic research into invasive species complexes.
- Contribute to understanding
 - causes
 - impacts & interactions
 - biological control

- Undertake basic research into invasive species complexes.
- Contribute to understanding
 - causes
 - impacts & interactions
 - biological control
- Integrative approaches across disciplines
 - Community ecology & food webs
 - Behavior and chemical ecology
 - Molecular & microbial ecology
 - Landscape and habitat management

- Funding \$2.7 million, 6 year grant
- Lee & Ramona Bass Foundation

- Funding \$2.7 million, 6 year grant
- Lee & Ramona Bass Foundation
- Recent long-term support from Robert & Helen Kleberg Foundation
- State Fire Ant program

Fire Ants

 Introduction and evaluation of multiple species of phorid flies.

 Interactions and impacts of combinations of parasitoid flies and pathogens.

Pseudacteon flies disrupt foraging by fire ants

Reduces colony growth rate

Impacts: loss of brood, impedes mound reconstruction. *Reduces colony growth rate*

23+ species in native range

5a

• 15 spp may co-occur locally

6a

10a

0

ovipositor shapes

69

- sizes linked to ant hosts
- activity period
- mating behaviors
- host location cues

Species established in North America

	Mound disturbance	Foraging trails	
Large flies	P. tricuspis P. nocens P. litoralis (Al)	P. obtusus	
Small flies	P. curvatus P. cultellatus (Fl)		

Species established in North America

Dynamic expansion in recently introduced populations of fire ant parasitoids (Diptera: Phoridae). LeBrun, Plowes, Gilbert 2007

Microsporidian pathogens

- Specialized parasitic fungi
- Highly reduced organisms
 2Mbp genomes, no mitochondria
- Possible vectoring by phorid flies

Williams et al 1999

Pre-emptive Cactoblastis study

H Robertson

Problem statement

- *Cactoblastis* arrived in FL in 1989.
- Is likely to spread into Texas & Mexico
- Projected major impacts to ecosystems
- USDA approaches:
 - sterile male releases
 - eradication at local scales

C. cactorum larva (right) and Melitara prodenialis from Texas

(left).

Project structure and goals

Goal: to identify potential approaches for biological control of *Cactoblastis*

The immediate objectives are:

- Build on prior studies that identified egg & larval parasitoids in the native range in S America.
- Study the parallel system of Texan cacti that host closely related moths and their parasitoids.
- Explore microsporidian and other host specific pathogens
- Produce demographic life-table studies to identify key mortality factors

Assessing the South Texas parasitoid fauna

Given the diversity and abundance of Opuntia in South Texas, it is likely that several Lepidopteran species utilize this as a host plant, and in turn they may support a range of parasitoids.

Genus	species	Comment
Melitara	prodenialis	North-Central & South East Texas native
	dentata	South Texas native
	texana	South Texas native
	doddalis	SW Texas
	apicigrammella	Texas
	subumbrella	Central Texas
	junctolineella	S. Texas, florivorous, 6 recorded parasitoids
Ozamia	fuscomaculella	Florivorous, California
	clarefacta	Florivorous, Texas
	lucidalis	Fruit feeding, Texas
Rumatha	4 species	Host plant: Cylindropuntia

C. cactorum larva (right) and Melitara prodenialis (left).

Parasitoid species	Cactoblastis species	Other hosts	Stage attacked	Degree of attack of Cactoblastis	Reference	Presumed specificity
Hymenoptera Braconidae						
Apanteles alexanderi Brethes	C. cactorum Berg		Larvae		Parker et al. 1953	broad
		Tucumania tapiacola Dyar Salambona analamprella (Dyar)	Not mentioned	Mann 1969		
				>30%	Zimmermann et al. 1979 Bennett & Habeck 1992 DeSantis 1967	
		Salambona analamprella Tucumania tapiacola Plutella maculipennis Curt. Eulia loxonephes Meyr. Eulia sp. Argyrotaenia sphaleropa (Meyr.) Lepidoptera sp.				
Chalcididae Brachymeria (Pseudobra- chymeria) cactoblastidis Blanchard	C. doddi Heinrich		Pupae		Mann 1969	
	Cactoblastis spp.		Pupae prob. hyperparasitoid		Zimmermann et al. 1979	
Brachymeria sp.	C. cactorum? C. cactorum		Pupae?		Bennett & Habeck 1992 Thompson 1943	
Ichneumonidae Chromosmutus doddi	Castablastis		9	Dare	Zimmermers et al. 1070	9
Chromocryptus doddi (Cushman)	Cactoblastis spp.		?	Rare	Zimmermann et al. 1979	?
Cryptus sp. Phyticiplex doddi (Cush- man) (Probably a synonym of Chromocryptus doddi)	C. cactorum C. cactorum		? ?		Mann 1969 Bennett & Habeck 1992	? ?
Phyticiplex eremnus (Porter) Podogaster cactorum (Cushman)	C. cactorum C. cactorum		? ?		Bennett & Habeck 1992 DeSantis 1967	? ?
Podogaster sp.	<i>Cactoblastis</i> spp. C. cactorum			Rare	Zimmermann et al. 1979 Mann 1969	?
Temelucha sp. (Temelucha = Cremastus)	Cactoblastis spp.	Salambona analamprella Tucumania spp.		5-30% Rare 5-30%	Zimmermann et al. 1979	?
Diptera						
Tachinidae Epicoronimyia mundelli (Blanchard)	C. doddi	Tucumania tapiacola Dyar			Mann 1969	?
(Blanchard 1975	

Zimmermann et al. 1979

TABLE 1. KNOWN PARASITOIDS OF CACTOBLASTIS IN THEIR NATIVE SOUTH AMERICA.

C. cactorum?

Microsporidian survey

Many insects have host specific microsporidia pathogens. They are often host specific and virulent.

- Survey microbes in larvae from Argentina and Texas cactus moths
- Using molecular phylogenetics, assess patterns of likely host specificity
- Future lab trials to test virulence and confirm host specificity

Nosema cactoblastis, sp. n., and Nosema cactorum, sp. n., Microsporidian Parasites of Species of Cactoblastis (Lepidoptora) destructive to Prickly Pear. By H. B. FANTHAM, M.A. Cantab., D.Sc. Lond., F.R.S.S.Af., F.Z.S., Stratheona Professor of Zoology, McGill University, Montreal, Canada.

> [Received April NOSEMA (MICROSPORIDA: NOSEMATIDAE) SPECIES AS POTENTIAL BIOLOGICAL CONTROL AGENTS OF CACTOBLASTIS CACTORUM (LEPIDOPTERA: PYRALIDAE): SURVEYS FOR THE MICROSPORIDIA IN ARGENTINA AND SOUTH AFRICA

> > ROBERT W. PEMBERTON¹ AND HUGO A. CORDO²

Evaluating detritivores and fungi for Buffel grass management

Problem statement

Buffel grass can achieve dense growth, outcompete native plants and alter the fire ecology, thereby reducing rangeland value for wildlife.

- Some ranchers value buffel grass for pastures, and may object to approaches that diminish its forage value.
- No previous efforts have been made to manage grasses in this situation using biological control.

Project structure and goals

Goal: is to discover and evaluate detritivores and endosymbiotic fungi that facilitate decomposition.

This pilot study would :

- Conduct feasibility studies of prospective detritivores in Kenya
- Investigate decomposition microbiota, especially fungi
- Compare fungi and detritivores in Kenya and Texas

Detritivores as biocontrol agents

Don Sands in Australia suggested that insect detritivores are good biocontrol candidates, being host specific and capable of reducing standing crops of old leaf material and promoting nutrient cycling.

(A) > 500 species

(B) > 5,000 species

Slides & texts -Marianne Horak

Decomposition microbiota

Endophytic fungi can directly increase the decomposition rate, or facilitate herbivory and litter breakdown.

Plant traits, including litter decomposition, arise not just from the plant genotype, but from the interactions of plant and fungal genotypes.

Ecology. 2010 May;91(5):1329-43

Inherited microbial symbionts increase herbivore abundances and alter arthropod diversity on a native grass.

Faeth SH, Shochat E

The goal is to identify host specific endophytic fungi on buffel grass.

- Use new molecular tools to identify the endophytic fungi of grasses in Texas and Kenya.
- Evaluate the candidate organisms for host specificity.

Tawny Crazy Ants Nylanderia fulva

Native range of Nylanderia fulva

Distribution of Nylanderia fulva in US

First record from US, 1953

US county records by 2004

US county records, 2004-2011

Adapted from J.A. MacGown

Problem statement

Tawny Crazy Ants are an emerging threat in Texas.

- They form extensive, dense colonies with billions of workers
- Extremely disruptive to humans and native biota
- Not susceptible to available pesticides

N. fulva tending membracids.

Impacts of Tawny Crazy Ants on Imported Fire Ants

Project structure and goals

Goal: to understand the ecological impacts and identify potential biological control agents.

This pilot study would :

- Conduct ecological studies in Texas and Argentina (native range), focused on competitors, food resources and colony dynamics.
- Identify and natural enemies, both parasitoids and pathogens.

Summary

causes and consequences biological control

